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In 1994, Andrew Wiles proved the

Semistable Modularity Theorem

Every semistable elliptic curve over the rational numbers is
modular.

thus proving Fermat's last theorem.



What?



A TIMELINE OF MATHEMATICS —~ — &



Antiquity



Pythagoras (c.500 BC)

Pythagoras's Theorem

If a right-angled triangle has side

lengths z, y, z, where z is the length of

the hypotenuse, then 22 + 2 = 22.

Generating triples (Euclid, ¢.300 BC)

Take integers m > n > 0. Then
z=m?—n?
Yy = 2mn
z=m? P n?

give a Pythagorean triple.



Pythagoras (c.500 BC)

In particular, the equation

2?42 = 22

has infinitely many integer solutions (x,y,2) € Z3.



Diophantus of Alexandria (c.300 AD)

m Wrote the Arithmetica (13 books)

m Invented algebra

m Obsessed with integer solutions to
polynomial equations

m Arithmetica book 2 problem VIII:
solves an equation of the form
22 + 9% = 22 for & and y given an
integer z




Fermat and Beyond



Pierre de Fermat (c.1600)

m Published no mathematics during
his life
m Often left proofs out of his letters

And this proposition is
generally true for all series
and for all prime numbers; |
would send you a
demonstration of it, if | did
not fear going on for too
long.

Fermat, stating his "little
theorem” in a letter to
Frénicle de Bessy




The Last Theorem

For every non-negative integer n, the number 22" + 1 is prime.

Fermat's Last Theorem

The equation

has no integer solutions (x,y,2) € Z3 for any integer n > 3.

The latter was scribbled in the margin of his copy of Arithmetica,
along with “I have discovered a truly marvelous proof of this,
which this margin is too narrow to contain”.



The Last Theorem

F . . I I 2271 ] . . _
22° 4 1 = 641 x 6700417.
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Special Cases

m Fermat proved case n = 4 by showing that a counterexample
would give a right-angled triangle whose area is a square
number.

m Euler (and Gauss) proved case n = 3 by factorising the
equation using the Eisenstein integers

ZIGs) = {a+ b5 | a,beZ}, (= e¥/3,



Gabriel Lamé (1800s)

Why doesn’t this work for all n?

Let ¢, = e*"/"  Then the equa-
tion can be written as

2"y = (24y) (@+Cay) - (e G T y) = 2"




Ernst Kummer

m Had already proved Z[(,] didn't
have unique factorisation when
n =23

m Tried to fix unique factorisation
issues using “ideal numbers”

m Proved FLT for all regular primes




The Modern Day



The Taniyama-Shimura Conjecture (1955)

Taniyama-Shimura Conjecture

Every elliptic curve over the rational numbers is modular.




Elliptic Curves & Modular Forms

Definition

An elliptic curve over Q is given by the solutions (z,y) € Q to an
equation of the form

y*> = a cubic in = (with rational coefficients),

(as well as a point “at infinity").
An elliptic curve is called nonsingular if the discriminant of the
cubic defining it is nonzero.



Elliptic Curves & Modular Forms

Definition

An elliptic curve over Q is given by the solutions (z,y) € Q to an
equation of the form

y*> = a cubic in = (with rational coefficients),

(as well as a point “at infinity").
An elliptic curve is called nonsingular if the discriminant of the
cubic defining it is nonzero.

Definition
A modular form is a function on the complex upper half-plane

satisfying certain symmetry and boundedness properties.
Every modular form has a Fourier series.






From Elliptic Curves to Modular Forms

Given an elliptic curve F,
m Choose a cubic with integer coefficients defining E
m Reduce everything modulo p for each prime p

m For those p which give a non-singular curve, set
ap :=p+ 1 — #{points of E modulo p}.

FE is modular if

FO) = ap’; q=e
p

defines some modular form f.



The Taniyama-Shimura Conjecture

But what does this have to do with Fermat?



The Frey Curve (1980s)

Definition
Suppose (a, b, c) € Z3 satisfies a? + bP = cP for some prime p > 5.
The corresponding Frey curve is the elliptic curve given by

y? = z(x — aP)(z + bP).

Can we prove that these don't exist?



Two Important Invariants

Every elliptic curve has a minimal discriminant A and a conductor
N. For the Frey curve these are

(abc)?P
256

I »

plabe, p prime

A
N
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Szpiro’'s Conjecture

For any € > 0, the ratio % is bounded above by a multiple of
NEFe,

2p—1
But for the Frey curve, we have % > % (exponential

growth!)



Serre & Ribet

m Serre: If we can prove a small
result “e”, then the
Taniyama-Shimura conjecture
implies Fermat's last theorem

m Ribet: Proved the € conjecture
(not without difficulty!), showing
that the Frey curve is not modular.
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Andrew Wiles

m Read The Last Problem by E.T.
Bell as a teenager

m Worked in secret from 1986 to
1993 on proving Fermat's last
theorem via the Taniyama-Shimura
conjecture




Andrew Wiles

In 1994, Wiles proved the

Semistable Modularity Theorem

Every semistable elliptic curve over the
rational numbers is modular.

m So the Frey curve is simultaneously
modular and not modular — a
contradiction

m So no Frey curve can exist

m So Fermat's last theorem is true.
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Further Reading

m Fermat’s Last Theorem by Simon Singh
m Lectures on YouTube about FLT: Ribet & Wiles

m Langlands program - Wiles lecture on YouTube
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